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method of characteristics [1] or a characteristic–Galerkin
method [8]. In two-step characteristic (transport + diffu-This paper describes the spline-characteristic method, an algo-

rithm for direct numerical simulation of incompressible, thermal sion) schemes [9, 10], the material is first transported and
convection in which the method of characteristics has been com- then an elliptic problem is solved. According to this ap-
bined with tricubic splines. The method of characteristics elimi- proach, the advection–diffusion equation
nates errors associated with large gradients of convected field
and allows large time steps, and the splines provide an accurate
spatial approximation. The proposed scheme is second-order in u

t
1 u ? =u 5 =2u (1)time and fourth-order in space. The applications of the spline-

characteristic method to the vorticity-transport equation and to the
Navier–Stokes equations in primitive variables in the framework of
the projection method are discussed. This scheme can be effi- can be discretized with the finite elements as
ciently parallelized and has been implemented on a distributed-
memory, massively parallel computer, CM-5. The results are given
for several test problems with different boundary conditions, both E

V
ui11 N dV 2 Dt E

V
=2ui11N dV 5 E

V
ui(Ri11)N dV, (2)

in 2D and 3D. Q 1996 Academic Press, Inc.

where Ri11 is the solution of a vector ODE
1. INTRODUCTION

dR
dt

5 u(R, t) (3)When advection dominates diffusion, the advection–
diffusion equation exhibits nearly hyperbolic behavior, and
the numerical treatment of it is a challenging problem. The

and ui is approximate solution of (1) at ti ; Dt 5 ti11 2 ti is
spectral, finite-difference, and finite-element schemes all a time step, and N is a test function. Equation (3) defines
have to have recourse to a small time step to maintain the characteristics of corresponding hyperbolic transport
stability. A method of characteristics has been widely used equation. This scheme is unconditionally stable [5] and
for the treatement of various transport problems including conservative up to quadrature errors on the approximation
fluid flow in porous media [1, 2] and weather simulations of the integral in the right-hand side of (2) [8]. In practice,
[3, 4]. The use of characteristics allowed us to overcome Eq. (1) can be nonlinear—the velocity may depend on u.
the Courant–Friedrichs–Lewy (CFL) time step limit in A predictor–corrector procedure was employed in [11] to
hyperbolic transport problems. The idea of using charac- approximate the unknown velocity in order to calculate
teristics of the corresponding hyperbolic equation to dis- the solution of (3). Calculation of the integral in the right-
cretize the total time derivative in a parabolic advection– hand side of (2) requires interpolation to obtain the value
diffusion equation had been put forward by Pironneau [5], of u between the grid points; and the interpolation inevita-

bly leads to numerical diffusion. The space-time, mixedBenqué et al. [6], and Douglas and Russell [7] more than
a decade ago. Since then, the practical utilization of this finite element method with the elements oriented along

characteristics has been recently proposed to eliminateidea to solve large-scale problems has been impeded by
the difficulty to find an interpolation algorithm which is numerical diffusion and ensure element-by-element con-

servation [12]. This method requires the use of deformableboth efficient and accurate enough not to introduce sig-
nificant aritificial smoothing of the solution. elements and, therefore, can be computationally expen-

sive. Cubic splines have demonstrated excellent propertiesThe combination of the method of characteristics with
the Galerkin approach is often referred as a modified regarding numerical dissipation and phase errors in treat-
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SPLINE-CHARACTERISTIC METHOD 467

ment of the advection–diffusion equation [13, 14]. This 2. VORTICITY-VECTOR POTENTIAL FORMULATION
approach was employed in [11], where bicubic spline inter-

The Navier–Stokes equations for an incompressible flowpolation was used to keep the numerical diffusion low.
can be reformulated in terms of the vorticity v 5 = 3 u,The spline-characteristic scheme was applied to the heat-
and the velocity can be obtained through a solenoidal vec-transport equation and tested on the 2D benchmark prob-
tor potential defined by u 5 = 3 A [25]. Then the Bous-lems [11] which are the de facto standard for infinite
sinesq approximation to thermal convection is describedPrandtl number convection [15, 16].
by the systemThe extension of method of characteristics to the incom-

pressible Navier–Stokes problem seems natural. Piron-
neau [5] proposed to use the divergence-free elements in Dv

Dt
5 2(v ? =)u 1 Pr =2v 1 Pr ? Ra ? = 3 Tẑ

(4)
the framework of the method of characteristics to model an
incompressible flow. A fully implicit, finite-element scheme DT

Dt
5 =2T,for the Navier–Stokes equation was outlined in [17].

Boukir et al. [10] have employed an Uzawa algorithm to
solve the Stokes problem. The practical implementation where D/Dt 5 /t 1 u ? = is the total (material) derivative,
of these ideas has been impeded by the numerical dissipa- T is a temperature, u is a velocity, and ẑ is a unit vector
tion due to repeated interpolation. The spline-characteris- in the direction of gravity; the definitions for Ra and Pr
tic method has proven its ability to control the artificial can be found elsewhere (e.g., see [26]). Both equations in
diffusion [11], but the spline-basis for the characteristic– (4) are similar to the advection–diffusion equation (1),
Galerkin method shared a serious disadvantage with the except for the vorticity-stretching term (v ? =)u.
spectral schemes: it restricted geometry of a computational Let us choose a time step Dt, define ti 5 i Dt, and consider
domain and the versatility was sacrificed for the sake of an initial value problem u(t0) 5 u0 , T(t0) 5 T0 for the
performance. The cubic splines have many valuable prop- system (4) on a rectangular prism V 5 [0, a] 3 [0, b] 3 [0, 1]
erties [18, 19] which facilitate their use for the spatial ap- with the grid G 5 (x1 , ..., xnx

) 3 (y1 , ..., yny
) 3 (z1 , ..., znz

)
proximation of PDEs. A spline-collocation scheme was imposed on V. This restriction on a geometry of computa-
used in [20] to solve the 3D Navier–Stokes equations, but tional domain is essential to enable spline-interpolation
the spline–Galerkin approach yields higher accuracy. (see the Appendix). Either Dirichlet or Neumann bound-

The study of thermal convection has been motivated by ary conditions can be employed for T. The boundary condi-
industrial, astro- and geophysical applications. The discov- tions for vorticity and velocity will be discussed later. Let
ery of transitions in the style of turbulent convection [21] us assume that we already know an approximate solution
facilitated numerical modeling of this phenomenon. Ther- of (4) for the time steps t0 , ..., ti . The following scheme
mal convection combines two processes: the advection of yields ui11 and Ti11 , the approximate solution at t 5 ti11 .
momentum and the transport of heat. The relative impor- (a) We extrapolate the velocity using its values at the
tance of these two phenomena is defined by the Prandtl previous time steps to obtain an initial approximation to
number (Pr). Thermal convection in a very viscous, high u(ti11) (parabolic extrapolation can be used).
Pr fluid serves as a model of dynamical processes in the

(b) We then solve a Cauchy problem for the ODEEarth’s mantle; convection with low Pr is of interest to
dR/dt 5 u(R, t) backwards in time from ti11 to ti using themeteorology and astrophysics. The problems associated
extrapolated value of u(ti11) obtained at the step (a). Thewith the numerical treatment of the advective term in Na-
nodes of spatial grid serve as the initial values for thisvier–Stokes equations are well known. Convection with
problem R(ti11) 5 G. Thus the grid points are traced back-very high Prandtl and Rayleigh numbers (Ra) can hardly
wards by the characteristics to their previous positionsbe reproduced in laboratory experiments, and numerical
R(ti). A second-order Runge–Kutta scheme is used to solvemodeling remains the only feasible approach to this prob-
the above ODE.lem. In the case of convection with infinite Pr and high

(c) Let us define F(v, u, T) 5 2(v ? =)u 1 Pr ? Ra ?Ra—which simulates the mantle flow—the computational
= 3 Tẑ. At this stage, we need to calculate v(R(ti), ti),difficulties arise from vigorous advection of heat. This phe-
F(R(ti), ti), T(R(ti), ti). Note that the points R(ti) do notnomenon has been numerically studied in 3D by means of
generally coincide with the nodes G. Therefore, this stepthe spectral methods [22, 23], and the spline-characteristic
requires an interpolation and introduces a certain amountmethod [24]. In this paper, the spline-characteristic method
of numerical diffusion. We use spline interpolation to cal-is extended to a finite Pr convection; it is applied to both
culate v(R(ti), ti), F(R(ti), ti), T(R(ti), ti) from the valuesthe Navier–Stokes equation and the thermal transport
of v(ti), u(ti), T(ti) at the grid points.equation. We present below two formulations of this

scheme, a vorticity-vector potential formulation and a pres- (d) We can now calculate vorticity vi11 and tempera-
ture Ti11 by solvingsure-correction formulation.
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1). The steps (b)–(e) of the above algorithm can be re-
peated utilizing the newly found velocity u(ti11) to solve
the characteristic ODE. Thus a higher order time-stepping
scheme can be constructed. The above spatial discretiza-
tion is implicit with respect to the diffusive term and ex-
plicit for the vorticity-stretching and forcing terms. The
vorticity-stretching term vanishes in a 2D flow, but it leads
to the coupling of all the three vorticity components in the
3D case.

For this formulation, the boundary conditions are well
known (e.g., see [27]) for two important cases: for a free-
slip—also called a stress-free—boundary and for a rigid

FIG. 1. Vorticity v is transported by the flow from its old position boundary. Let us assume n to be the unit vector normal
R(ti) 5 (x(ti), y(ti), z(ti))T to the new location R(ti11) along the characteris- to a bounding plane and s and t the orthogonal unit vectors
tic. If Ri11(ti11) is a node of computational grid at the time ti11 , then

laying within a bounding plane. Then the conditions on anRi11(ti) refers to its previous position at the time ti . The vorticity-transport
impenetrable boundary of a rectangular prism V areequation is discretized with respect to vi (Ri11(ti)), and an interpolation

is needed to calculate vorticity between the grid points. for the free-slip (zero tangential stress) boundary,

gn 5 gs 5 gt 5 An/n 5 As 5 At 5 0 (9)

E
V

vi11B dV 2 Pr Dt E
V

=2vi11B dV and for the rigid (zero velocity) boundary,

An 5 As 5 At 5 An/n 5 As/n 5 At/n 5 0. (10)5 E
V

v(R(ti))B dV 1 Dt E
V

F(R(ti))B dV, (5)

The free-slip boundary conditions (9) can be incorporatedE
V

Ti11B dV 2 Dt E
V

=2Ti11B dV 5 E
V

T(R(ti))B dV, (6) into the spline-basis for v and A as the substantial bound-
ary conditions. For a rigid boundary, the v 2 A system is
inextricably coupled. Then (5) can be replaced by a fourth-where B is a trial function, a basis tricubic spline in our
order equation with respect to A. Although this equationcase. In order to calculate integrals in the right-hand sides
could be solved in a spline-space, it leads to an ill-condi-of (5) and (6), we assign the already known values of
tioned matrix which is a serious obstacle for the iterativev(R(ti), ti), F(R(ti), ti), T(R(ti), ti) to the grid points and
solvers.then calculate the spline representation of these fields. In

The momentum equation in (4) is an advection–other words, we project the grid values to a spline space
diffusion equation for vorticity with a forcing term (buoy-by calculating a vector of coefficients (c1 , ..., cn) such that
ancy) and yet with another additional term, the vorticity
stretching term (v ? =)u. When discretized with character-

v(xp , yq , zr) 5 On
j51

cj Bj (xp , yq , zr) (7) istics, an advection–diffusion equation does not contain
the advective term and therefore allows time steps that
are larger than the one dictated by the CFL criterion [5].

at every grid point (xp , yq , zr), p 5 1, ..., nx ; q 5 1, ..., ny ; Discretization of the vorticity stretching term introduces
r 5 1, ..., nz and n 5 nx ny nz is the total grid size. We also a stability constraint on a time step. We are presently
calculate the spline coefficients of F and T. A Galerkin unable to obtain an exact formula for this constraint. In
form with splines employed in (5) and (6) leads to two order to do that, we would need to estimate a norm of the
systems of linear equations. We obtain the spline coeffi- operator v ? curl21. The vorticity stretching term is small
cients of gi11 and Ti11 by solving these systems. at high Pr, and it is the viscous term which controls the

time step. The discretization in (5) and (6) is implicit with(e) We can now find velocity u(ti11) by solving three
respect to the diffusive terms Pr ? =2v and =2T. An explicitPoisson equations =2Ai11 5 2vi11 for the components of
discretization can also be used, provided that the time stepvector potential.
is small enough to ensure stability.

The ODE dR/dt 5 u(R, t) defines characteristic curves
of a hyperbolic advection equation. We trace vorticity 3. VELOCITY-PRESSURE FORMULATION
backwards to find v(R(ti), ti), the vorticity at the time
instant ti at the point R(ti) 5 (x(ti), y(ti), z(ti))T. It is the The primitive variables, velocity u and pressure P, allow

greater flexibility in the choice of boundary conditions forpoint from where a vortex was transported to a node of
computational grid along a characteristics curve (see Fig. the system
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velocity and the pressure. The velocity boundary condi-Du
Dt

5 Pr =2u 2 =P 1 Pr ? Ra ?S1
a

2 TD ẑ (11) tions are un 5 us/s 5 ut/t 5 0 for the free-slip boundary
and un 5 us 5 ut 5 0 for the rigid boundary. The choice
of boundary condition for the pressure is somewhat moreDT

Dt
5 =2T (12)

complicated. Gresho [29] has shown that the proper bound-
ary condition for pressure is the Neumann condition, ob-

= ? u 5 0, (13)
tained by applying the normal component of the momen-
tum equation. The normal component of (11) on the

where a is the coefficient of thermal expansion. There are boundary G yields
several approaches to ensure the incompressibility con-
straint (13). Pironneau [5] employed the divergence-free
triangular elements to discretize the Navier–Stokes equa- 2

P
n

1 Pr
2un

n2 1 fn 5 0, (17)
tions for the incompressible flow in a framework of the
characteristic–Galerkin method. In practice, a higher order
interpolation than linear is needed to keep the numerical where fn is a normal component of the gravity force f 5
diffusion low. The projection method [28, 29] can be used Pr ? Ra ? (1/a 2 T)ẑ. Since (13) holds everywhere on V,
with both the finite elements and the finite differences of including G, then
any order. The following semi-implicit algorithm com-
bines the spline-characteristic scheme with the projec-
tion method: 

n
= ? u 5

2un

n2 1


s
us

n
1



t

ut

n
5 0. (18)

(a) We first predict u(ti11) by extrapolating velocities
from the previous time steps.

Then on the free-slip boundary 2un/n2 5 0, and the(b) After that, we find the previous positions of the
boundary condition for pressure is P/n 5 fn . If the iso-grid points (see Section 2) employing the predicted value
thermic boundary condition is imposed on G, i.e., f 5 const,of u(ti11).
then the pressure boundary condition is decoupled from

(c) We calculate values of velocity ui (Ri11(ti)) and tem- the velocity; and it can be incorporated into the spline-
perature Ti (Ri11(ti)) at these locations using spline interpo- basis as a substantial boundary condition for the Poisson
lation. equation (16). For the rigid boundary 2un/n2 may be

(d) We now assign these values to the nodes of compu- nonzero and the velocity and pressure are coupled by the
tational grid and project them into the spline-space to boundary condition (17). Gresho [29] argued that a homo-
calculate the right-hand sides for geneous Neumann boundary condition can be employed

for pressure, but the discrepancy in the pressure boundary
condition then introduces a spurious numerical boundaryE

V
ũB dV 2 Pr Dt E

V
=2ũB dV

of the thickness d 5 ÏDt, which must be small relative to
any physical length scale, such as the thickness of thermal

5 E
V

ui (Ri11(ti))B dV 1 Ra ? Pr ?E
V

ẑB dV or viscous boundary layer in convection. A better approxi-
mation for the pressure boundary condition can be ob-

2 Ra ? Pr ?E
V

ẑTi (Ri11(ti))B dV (14) tained by taking 2un/n2 from the preceding time step.
Then the thickness of the spurious boundary layer would
diminish to Dt.E

V
Ti11B dV 2 Dt E

V
=2Ti11B dV 5 E

V
T(R(ti))B dV (15)

The direct application of the spline–Galerkin scheme to
(16) would lead to an underdetermined linear system, since

as in Section 2. the pressure is defined up to an arbitrary additive constant.
(e) We solve (14) to get the intermediate velocity ũ. The pressure could be ‘‘pinned’’ at one point, but it would

cause poor convergence properties, and it is better to mini-(f) We use the intermediate velocity to calculate the
mize simultaneously its average valuepressure from ũ as it is done in the projection scheme

=2P 5
1
Dt

= ? ũ. (16) E
V

=2PB dV 1 « E
V

PB dV 5 2
1
Dt

E
V

= ? ũB dV (19)

(g) We finally correct the velocity ui11 5 ũ 2 Dt =P.
(« is a small parameter), which is equivalent to the removal
of the zeroth harmonic of pressure in a spectral scheme.This scheme requires boundary conditions for both the
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4. PARALLEL IMPLEMENTATION OF THE which have been located until the intervals for all the R̃pqr

are found. It is done in parallel for every point or for everySPLINE-CHARACTERISTIC SCHEME
triplet of indices p, q, r. We apply the same procedure to

We describe here the parallel implementation of find the grid intervals along the y- and z-axes.
schemes from Sections 2 and 3. We will refer here to the The next step (step (d) in Section 3) involves projection
scheme for primitive variables (Section 3) since both from the physical space to spline space. In order to find
schemes share the same implementation details. The coefficients (c1 , ..., cn) of spline-representation (see (7) in
scheme has been implemented on a massively parallel, Section 2), we need to solve a large number of tridiagonal
distributed-memory supercomputer, the CM5, in a single systems. Due to the tensor-product nature of spline-inter-
instruction multiple data (SIMD) mode. Programming in polation, we can first project x-coordinates to 1D spline
SIMD mode is usually less complex than in multiple in- space and then y- and x-coordinates, consequently, the
struction multiple data (MIMD) mode, where the data same way a multidimensional Fourier transform is done
exchange between processors must be coded explicitly and [19]. This operation is highly efficient on a parallel com-
a user must deal with the synchronization issues. Neverthe- puter since all the tridiagonal systems are independent and
less the MIMD style programming ultimately grants better can be solved simultaneously. We usually keep one of the
hardware utilization. axes local to a processor. We utilize a direct tridiagonal

In the SIMD approach, each node of the spatial grid is solver for this local axis and use an iterative solver for the
associated with a virtual processor. A physical processor two remaining nonlocal axes. We could, instead, make
can accomodate several virtual processors; i.e., data from every axis local, in turn, by performing matrix transpose
several grid points reside in the memory of a single physical and thus solve only completely local tridiagonal systems.
processor. Operations involving data from different pro- However, the transpose takes a noticable time due to the
cessors result in interprocessor communications which typ- interprocessor communications involved and requires
ically cost much more than the arithmetic operations within some temporary arrays. The multiple instance tridiagonal
the memory of a single processor. The implementation

solvers themselves run very fast but some computer timestrategy focuses on the reduction of interprocessor commu-
and memory is lost by doing a transpose. We found thatnications. Step (a) from Section 3, the extrapolation of the
it is faster to use a combination of direct and iterativevelocity using values from previous time steps, does not
solvers which requires less communication and avoid theinvolve interprocessor communications since velocity is
matrix transpose.extrapolated at every grid point independently. Step (b)

The Poisson solver is the most computationally intensiveinvolves communications which follow unpredictable pat-
part of the scheme. The spline–Galerkin form of a pressureterns. At this stage, we must find the previous locations of
Poisson equation (19) results in a block-diagonal matrix.grid points along the characteristic curves (see Fig. 1). We
The matrices for Eqs. (5), (6), (15), and (16) have the sameuse a second-order Runge–Kutta scheme to trace the grid
structure and properties. All the entries of these matricespoints backwards. Thus, we first calculate the coordinates
are integrals of products of basis splines and their deriva-of intermediate locations R̃ 5 R(ti11) 2 ui11 Dt, where
tives which are piecewise polynomials. The entries canR(ti11) 5 G is the vector of coordinates of grid points. The
be precomputed and stored in a table. The matrices arecoordinates of previous positions we seek are then given
symmetric positive definite. We have employed a conjugateby R(ti) 5 R(ti11) 2 0.5(ui11 1 u(R̃)) Dt. We need to know
gradient iterative scheme to solve these systems. A matrix-the velocity in the intermediate locations. These locations
by-vector multiplication controls the performance of thecan be elsewhere within the rectangular prism V and they
conjugate gradient solver. It is a regular, stencil-type ma-do not generally coincide with the grid points. The velocity
trix-by-vector multiplication and involves a certain amountat the intermediate locations can be obtained by spline-
of communication in a form of vector shifts. The other basisinterpolation of the velocity field ui given by its spline
operation of a conjugate gradient solver, a dot product ofrepresentation. We only need to know the grid intervals
two vectors, takes much less time than the matrix-by-vectorwhere the points R̃pqr 5 (x̃p , ỹq , z̃r) reside. A search proce-
product. A dot product belongs to a family of operationsdure has to be implemented if the grid is nonequispaced.
known as global reductions. The global reductions on theSince we assume a tensor product grid, the search can be
CM5 utilize a special low-bandwidth and low-latency net-conducted consequently for every spatial dimension and
work. In general, the spline-characteristic scheme can bein parallel for every point. Thus we first seek the intervals
efficiently parallelized.on the x-axis for every point, then on the y-axis and the

z-axis. It is reasonable to begin the search from the interval
containing the starting grid point. First, we check whether 5. TEST RESULTS
x̃p belongs to the interval (xp , xp11). If yes, we mask this
point out and continue the search for the other points. We The chaotic behavior of a finite-Prandtl-number, 3D

thermal convection has been examined numerically in sev-check (xp21 , xp), (xp11 , xp12), etc., masking out the points
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TABLE I a satisfactory result for Ra 5 106 with the results deviating
by not more than 1% of the values reported in [32].The Benchmark Results and Their Relative Deviation d from

A steady-state, 2D benchmark is clearly restricted in theThose in [28]
evaluation of the virtues of the code intended to simulate

104 105 106 the 3D turbulence. Therefore, the comparative 3D simula-
tions have been done for a variety of Ra and Pr. BothRa Value d Value d Value d
formulations, the vorticity-vector potential and the veloc-
ity-pressure, were employed to model convection in theNu 2.219 20.010 4.370 20.033 8.000 20.090

w max 19.59 20.001 68.40 20.003 218.5 20.004 aspect-ratio 2Ï2 3 2Ï2 3 1 box with the periodic bound-
x 0.120 10.001 0.068 10.002 0.043 10.005 ary conditions on the vertical boundaries, and the free-slip
u max 16.13 20.003 35.60 10.025 78.79 10.219 conditions on the isothermic horizontal planes. Figure 2z 0.824 10.001 0.859 10.004 0.885 10.035

exhibits the time series of the surface Nu and the rootNu max 3.468 20.017 7.245 20.061 14.67 20.182
mean squared (RMS) velocity of convection with Pr 5 1.0z 0.149 10.006 0.096 10.015 0.052 10.014

Nu min 0.596 10.017 0.790 10.083 1.250 10.262 and Ra 5 104. A steady-state solution in the form of two
z 1.000 10.000 1.000 10.000 1.000 10.000 counterrotating rolls was obtained after the initial transient

stage. Both formulations yielded almost identical Nu on
the same computational grid, but the RMS velocity was
slightly less for the primitive variables. Although the initial
conditions were different and the solutions had not yeteral publications (e.g., [30, 31]). Even for the simpler cases,

the numerical treatment of equations sometimes is fraught converged completely to the steady state. The ‘‘safe’’ solu-
tion was calculated on a vertically nonequispaced grid ofwith blemishes—some physical phenomena may be sup-

pressed by the inadequate resolution, or the numerical 64 3 64 3 32 splines. The solution obtained on the verti-
cally nonequispaced grid of 32 3 32 3 16 splines wasmethods can introduce the spurious, nonphysical pro-

cesses. The spatial resolution of numerical experiments closer to this ‘‘safe’’ solution than one calculated on the
equispaced grid. Another case, Pr 5 10.0 and Ra 5can hardly be judged by simple examination of the energy

contents of the Fourier modes, since some methods can 2.63 3 104, suitable for benchmarking, was provided in
[30], where a single period solution was established afterintroduce the artificial damping at high wavenumbers. Er-

rors in the spatial approximation affect the temporal accu- the transient stage. Both formulations of the spline-
characteristic method yielded the periodic solution—tworacy. Curry et al. [30] have demonstrated how the inade-

quate spatial resolution in numerical convection leads to oscillating rolls—with the frequency of 43 (Fig. 3). This
value is close to 39 reported in [30] taking into accountthe strong attenuation of high frequencies in the temporal

domain. Therefore, it is always desirable to test the behav- a rather large margin of error in our case.
The above tests, although being calculated in the 3Dior and accuracy of algorithms experimentally and verify

them against the existing benchmarks. geometry, gave solutions in a form of 2D rolls infinitely
extended in the direction of a horizontal axis; and theThe 2D, steady-state benchmark for a finite-Prandtl-

number convection [32] provides a basis for the limited vorticity-stretching term vanished in these, essentially 2D,
cases. Increasing the Rayleigh number a fully 3D, chaoticassessment of the proposed algorithm. This test problem

simulates convection with Pr 5 0.71 in the aspect ratio 1 solution was obtained for Pr 5 1.0 and Ra 5 3.0 3 105 on
the grid of 64 3 64 3 32 splines using the vorticity-vectorbox with all the rigid boundaries, and with z vertically

upwards, the boundaries z 5 0 and z 5 1 assumed insu- potential formulation, but this scheme failed to converge
for Pr 5 0.7 and Ra 5 6.5 3 106 on the 128 3 128 3 64lated, and T 5 1 at x 5 0 and T 5 1 at x 5 1. The same

code, which was used for the time-dependent problems, grid. The explicit treatment of the vorticity-stretching in
(5) caused the fiasco. A higher-order approximation waswas employed to get the steady-state solutions of this

model problem. The spline-characteristic method with pro- obviously needed for this term; and how to construct this
approximation in the framework of spline-characteristicjection was applied to the system (11)–(13) in primitive

variables (see Section 3) on the equispaced grid of 32 3 method is still an open question. The parameters for this
case were taken from [33]. This simulation was described32 bicubic splines. The test results are summarized in Table

I, where the calculated values are given, together with their in detail and therefore provided an opportunity to test the
proposed numerical scheme in the hard-turbulent regime.relative deviation d from the best solution in [32]. The goal

was to test the real code, not to obtain the best approxima- The spline-characteristic method with primitive variables
(see Section 3) yielded a stable solution (Fig. 4). It is impos-tion to the benchmark problem; and the results in Table

I exhibit generally good matching with [32], except for sible to obtain exactly the same picture of a turbulent flow
at each time instant with two different methods, but theRa 5 106—the 32 3 32 grid insufficiently resolves the flow

for this Ra. A better spatial resolution (64 3 64) yielded main properties and the averaged quantities should match.



472 ANDREI V. MALEVSKY

FIG. 3. The time series of the surface Nu of convection with Pr 5

10.0 and Ra 5 2.63 3 104 in a 3D box with the aspect ratio 2Ï2· 3

2Ï2· 3 1, the free-slip horizontal boundaries and the periodic vertical
boundaries. The temperature 0 was kept on the upper surface, and 1 on
the lower surface. A vertically nonequispaced grid of 32 3 32 3 16 splines
was employed. The time scale is given in the thermal diffusion units.
Both the vorticity-vector potential (– – –) and the velocity-pressure (...)
formulations yielded the periodic solution with a single frequency of
approximately 43 after the initial transient stage.

FIG. 2. The time series of the surface Nu and the RMS velocity of
convection with Pr 5 1.0 and Ra 5 104 in a 3D box with the aspect ratio
2Ï2· 3 2Ï2· 3 1, the free-slip horizontal boundaries and the periodic
vertical boundaries. The temperature 0 was kept on the upper surface,
and 1 on the lower surface. The time scale is given in the thermal diffusion
units. The spline-characteristic method was applied to the vorticity-trans-
port equation in (a) (...), (b) (— —), and (c) (– – –), and to the Navier–
Stokes equations in primitive variables employing the projection scheme
in (d) (– ? – ? –). The initial conditions for (a)–(c) differ from those taken
for (d). All cases yielded a steady-state solution, the two counterrotating
rolls. A vertically nonequispaced grid with 32 3 32 3 16 cubic splines
was used in (b) and (d); an equispaced grid with 32 3 32 3 16 splines
was employed in (a); and (c) was calculated on a vertically nonequispaced
grid of 64 3 64 3 32 splines.

All the quantities measured in our simulation agree well
with the findings in [33]. We find the time-averaged Nu 5
23.0 6 0.6 versus 23.7 reported in [33]. The probability FIG. 4. A top view of convection with Pr 5 0.7 (air) and Ra 5

6.5 3 106 in a 3D box with the aspect ratio 2Ï2· 3 2Ï2· 3 1, the free-distribution functions (PDF) give an insight into the small
slip horizontal boundaries and the periodic vertical boundaries—all thescales of motion. The PDFs of the temperature and velocity
parameters are identical to those in [33]. This case—well described influctuations (Fig. 5) are similar to those in [33], although
the publications—has been recomputed to verify the algorithm in the

our statistics are based on significantly fewer realizations. hard-turbulent regime. The spine-characteristic 1 projection method was
The data for the PDFs are ensembled over a horizontal used on a grid of 128 3 128 3 64 cubic splines. The white ‘‘spaghetti’’

depict thermal structures in the cold boundary layer, the Benard cells.plane for several time instants. The power spectrum of
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with respect to this term would couple the equations for
velocity components. An extrapolation, e.g., Adams–
Bashforth, scheme may resolve this problem, but the values
of F in (5) at the previous time steps must be taken from the
characteristic curves, not at the nodal points. The spline-
characteristic method, combined with the projection
scheme for the Navier–Stokes equations in primitive vari-
ables, maintains stability even at high Re. However the
velocity-pressure scheme requires a very small time step
if both Ra and Pr are high and the vorticity-vector potential
formulation works better. The benchmark comparisons
corroborate the accuracy of the proposed numerical
scheme.

A significant number of numerical simulations have been
conducted recently for the 3D thermal convection, some-
times addressing such delicate issues as the behavior of
small scales in a turbulent regime. These developments
have created prerequisites to build the rigorous 3D bench-
mark for the convection codes.

APPENDIX: TRICUBIC SPLINES

The cubic splines are well suited for the interpolation
and the spatial approximation of PDEs. A multidimen-
sional cubic spline consists of the polynomials of third
order with respect to each spatial variable. These polyno-
mials are welded at the nodal points to preserve the conti-

FIG. 5. Probability distribution functions (PDF) of the temperature nuity of the function and its derivatives. A 3D cubic spline
fluctuations (...), fluctuations of one of the horizontal velocities (— —),

has the continuous derivatives i1j1k/x i y j  zk for i #and the vertical velocity fluctuations (– – –) as they are defined in [29];
2, j # 2, k # 2.and the time-averaged spectrum of kinetic energy with k25/3 and k23

shown for the reference (b). The PDFs and the spectrum are measured There is usually a distinction between an order of spline
in the midplane z 5 0.5. and an order of the polynomial which generates the spline

in the spline literature. A polynomial of the order m 2 1
generates a spline of the order m. Thus a cubic spline is
said to have a fourth order. A 1D polynomial spline ofvelocity fluctuations in Fig. 5 is calculated by averaging
order m is a piecewise polynomial, which can be expressedboth in time and over the polar angle in the horizontal
as a linear combination of the basis splines B with the localplane. The spectrum exhibits two subranges and is similar
support over m grid intervals [19]. The basis splines Bj ofto one in [34].
order m can be defined as translations of the cardinal B-
spline Nm : Bj (x) 5 Nm(x 2 j). The mth order cardinal

6. CONCLUSIONS B-spline can be calculated recursively as a convolution
Nm 5 Nm21 p N1 , or alternatively, as Nm(x) 5 (xNm21(x) 1
(m 2 x)Nm21(x 2 1))/(m 2 1), where N1(x) 5 x[0,1](x) isThe spline-characteristic method combines the efficient

treatment of advection with high-order spatial approxima- a box function [36]. The translations of Nm generates a basis
in the space of splines of order m with periodic boundarytion. This method had previously proven its robustness in

the numerical treatment of the heat-transport equation conditions. The basis splines at the ends of the interval
must be modified in order to represent another bound-where advection dominates diffusion both in 2D [11] and

in 3D [24]. It has been also applied to simulate low Pr ary condition.
The space of multidimensional splines can be expressedconvection in turbulent regime [35].

Both the vorticity-vector potential and velocity-pressure as a tensor product of the 1D spline spaces, or, in other
words, each 3D basis spline is a product of three 1D basisformulations are feasible, but the applicability of the vortic-

ity-vector potential formulation is restricted, and the splines. We use here a modified spline-basis. For the easy
treatment of boundary conditions it is convenient to specifyscheme may be unstable at high Re, due to the explicit

handling of the vorticity-stretching term. A scheme implicit the derivatives of the B-splines adjacent to the boundary
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TABLE II

The Spline-Basis for the Equispaced Grid x1 5 0, x2 5 h, ..., xn 5 (n 2 1)h; j 5 (x 2 xj)/h

Spline/interval 0 # x # h h # x # 2h 2h # x # 3h

Ba(j) 1
2

j 2 2
11
36

j 3 7
36

1
1

12
j 2

5
12

j 2 1
7

36
j 3 1

18
2

1
6

j 1
1
6

j 2 2
1

18
j 3

Bb(j) j 2
1
3

j 3 2
3

2 j 2 1
1
2

j 3 1
6

2
1
2

j 1
1
2

j 2 2
1
6

j 3

Bd(j) 1 2
1
6

j 3 5
6

2
1
2

j 2
1
2

j 2 1
1
3

j 3 1
6

2
1
2

j 1
1
2

j 2 2
1
6

j 3

Bc(j) for j 5 3, ..., n 2 2

( j 2 3)h # x # ( j 2 2)h ( j 2 2)h # x # ( j 2 1)h ( j 2 1)h # x # jh jh # x # ( j 1 1)h

1
4

j 3 1
4

1
3
4

j 1
3
4

j 2 2
3
4

j 3 1 2
3
2

j 2 1
3
4

j 3 1
4

2
3
4

j 1
3
4

j 2 2
1
4

j 3

(n 2 4)h # x # (n 2 3)h (n 2 3)h # x # (n 2 2)h (n 2 2)h # x # (n 2 1)h

B̂a(j) 1
18

j 3 1
18

1
1
6

j 1
1
6

j 2 2
7

36
j 3 7

36
2

1
12

j 2
5

12
j 2 1

11
36

j 3

B̂b(j) 1
6

j 3 1
6

1
1
2

j 1
1
2

j 2 2
1
2

j 3 2
3

2 j 2 1
1
3

j 3

B̂d(j) 1
6

j 3 1
6

1
1
2

j 1
1
2

j 2 2
1
3

j 3 5
6

1
1
2

j 2
1
2

j 2 1
1
6

j 3

of a computational domain. Indeed each of the sets Ba , by taking n basis splines Bc . The coefficients of the
piecewise cubic polynomials Bj , j 5 1, ..., n, are computedBb , Bc , Bc , ...; Bd , Bb , Bc , Bc , ...; Bd , Ba , Bc , Bc , ... yields

a unique B-spline basis on a 1D grid x1 , ..., xn , where the once for each grid by solving n linear systems of size 16 3 16
which define the four coefficients of the four polynomialspiecewise cubic polynomials Ba , Bb , Bc , Bd are defined by

the conditions: composing a basis spline. These systems can be constructed
by taking (20), together with the continuity conditions for
the B (k), k 5 0, 1, 2 at the nodal points. Coefficients ofBa(x1) 5 0, B 9a(x1) 5 1, B 0a(x1) 5 0,
the polynomials which constitute the basis splines for an
equispaced 1D grid are given in Table II, where j 5 (x 2Ba(x4) 5 B 9a(x4) 5 B 0a(x4) 5 0
xj)/h denotes the local coordinate with respect to a nodal
point xj . This choice of basis makes the scheme flexible inBb(x1) 5 0, B 9b(x1) 5 0, B 0b(x1) 5 1,
the treatment of substantial boundary conditions.

Bb(x4) 5 B 9b(x4) 5 B 0b(x4) 5 0
(20) ACKNOWLEDGMENTS
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